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The Lattice Boltzmann Equation on Irregular Lattices 

Francesca Nannel l i  1'2 and Sauro Succi 1 

A general framework to extend the lattice Boltzmann equation to arbitrary 
lattice geometries is presented and numerically demonstrated for the case of a 
two-dimensional Poiseuille flow. The new scheme considerably extends the 
range of applicability of the Boltzmann method to problems requiring the use 
of nonuniform grids. 

1. I N T R O D U C T I O N  

Despite of its recent origin, the lattice Boltzmann equation (LBE) has 
already been successfully exploited in several fluid-dynamic applications, 
ranging from low-Reynolds flows in porous media to fully developed 
isotropic turbulence. (1) Yet, if compared with more conventional numerical 
techniques, LBE suffers from the limitation of being constrained to a 
special class of uniform and regular lattices ensuring rotational invariance. 
This limitation is particularly severe in many practical applications, where 
a selective distribution of the spatial nodes close to the critical regions of 
the flow is mandatory to fully capitalize on the computational resources. 
This motivates a considerable interest in extending the range of 
applicability of the LBE method to arbitrarily nonuniform meshes. This 
possibility has been recently pointed out by Higueral2/; the idea is to use 
a coarse-grained distribution function which is defined at the center of 
macrocells, each of which can contain several nodes of the regular fine- 
grained grid where the original LBE dynamics takes place. This coarse- 
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grained distribution function is then displaced in fractional amounts, whose 
value is fixed by the number of particles crossing the boundary of the 
macrocell per unit time. Before becoming practical, this idea has~ however, 
to be quantitatively confronted with the important test of numerical diffu- 
sion, a problem apparently not addressed in the aforementioned work. In 
this paper we will exhibit a concrete example of a finite-volume LBE 
(FVLBE) largely free of numerical diffusion. This opens the way to the 
application of the LBE methodology to a number of important problems 
requiring the use of nonuniform grids. 

2. F I N I T E - V O L U M E  F O R M U L A T I O N  OF LBE (FVLBE)  

Our starting point is the usual LBE in a regular lattice (4) 

f / ( x  -k- Vi'C , t q- "~) - -  f i ( x ,  t )  = ~, ff2ij(f j _ f~q,2)  _ ~ i  
J 

1) 

where f i - f ( x ,  v;, t) is the particle population at node x in the direction 
vi at time t. The velocity variable v~ is discretized on a suitable discrete 
lattice ensuring isotropy on a macroscopic level. In the sequel we shall refer 
to the 2D projection of the 4D FCHC lattice (3) defined by 4 nearest- 
neighbor links v;= (1, 0), (0, 1), ( - 1 ,  0), and (0, - 1 ) ;  four diagonal links 
(1, 1), ( - 1 ,  1), (1, - 1 ) ,  and ( - 1 ,  - 1 ) ;  and a rest particle (0, 0); for a total 
of 9 independent populations. The rhs of Eq. (1) represents the effect of the 
particle collisions, whose properties have been discussed in depth in 
previous publications./1) This matrix is real and symmetric and fulfills the 
sum rules imposed by mass and momentum conservation. Finally, feq,2 
represents the local equilibrium distribution function, expanded to second 
order in the local flow field u in order to retain advective effects: 

fYq'2(u) = QJ~,t~ u~u/3; 
1 

Qi=: = vi: - ~ 6=~; e, fl = 1, 2 (2) 

It can be shown that in the continuum limit and provided that 2 >1- - 2 ,  
Eq. (1) converges to the Navier-Stokes equation for a continuum fluid, 
with a viscosity (in lattice units) 

V L B E = - - ~  -- (3) 

2 is the nonzero eigenvalue of 12 0 associated with the set of eigenvectors 
Qi~a. This eigenvalue can be tuned to minimize the fluid viscosity, i.e., 
maximize the Reynolds number R e =  uL/v. In principle, zero viscosity 
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could be achieved by choosing ~. = - 2 ,  but in practice I~LB E cannot be 
lowered below a threshold of the order of 1/N, N being the number of grid 
points for dimension in the simulation, for, otherwise, unresolved scales 
would be excited in the flow. It should be stressed that in order for Eq. (1) 
to converge to the Navier Stokes result in the continuum limit, it is 
essential that the velocity variable remain discretized in a suitable regular 
lattice in order to enforce the symmetry relations on the matrix f2o which 
guarantee mass and momentum conservation as well as rotational 
invariance. This is the reason why the validity of LBE is limited to a 
uniform and regular grid. On the other hand, if we take the differential 
form of Eq. (1), there is no a priori reason why LBE should not be 
available to a coarse-graining procedure via a finite-volume (FV) technique. 
We feel that the FV method is particularly appropriate to this purpose 
because it represents the most natural continuation at a macroscopic level 
of those "first principles" (conservation laws) which form the common 
basis of the lattice gas and lattice Boltzmann method. Of course, one has 
to be careful that in the continuum limit, this FV formulation will still 
reproduce the Navier-Stokes equation. In this paper, we shall present a FV 
version of LBE with the desidered property (we shall hereafter refer to this 
property as to "hydrodynamic consistency," h-consistency for brevity). 

As a first step, we introduce a two-dimensional macroscopic grid 
whose elementary cells are quadrilaterals of arbitrary shape (see Fig. 1). 

A coarse-grained distribution Fe can then be defined via a cell- 
averaging operator Ap such that Fe =-Apf= A l ~cp f dA, where Ce is the 
cell centered around the point P. By acting with A p on the differential form 

Ayn 

s i 
I 

I 

AXo 
Fig. 1. A typical control cell for the finite-volume formulation of LBE. 
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of Eq. (1) and applying a first-order time-marching scheme, standard 
calculations lead to the following form of FVLBE: 

~'ie=Fie--AtZgio~R~o,rie~, 
f f  i f '  

+ At~ f2ij(Fje-Qj~t~Ue~Uea-Oj~(u'e~u'e/~) ) (4) 
J 

where a caret indicates the time t+ At. The meaning of the symbols is as 
follows: gi~=v; ' t~)l~ is the projection of the boundary edge l~, 
a=e,n,w,s  standing for the "east," "north," "west," and "south" 
boundaries, along the direction v;; R~, is the matrix representation of the 
reconstruction operator /~ expressing the boundary values f,.~ in terms of 
the nodal values F;p,; P~, describes a suitable neighborhood of P which 
depends on the order of the interpolation. This completes the streaming 
phase. As to the coarse-grain collision operator, Ue~ represents the cell- 
averaged macroscopic flow ( U p s -  3pu~), while u'~ is the fluctuating com- 
ponent of u~ (brackets denote ceil-averaging). It is important to notice that 
these fluctuations are perfectly identified once a specific form of the 
reconstruction operator is chosen. For instance, by choosing a bilinear 
interpolator, it is clear that u'~ are also bilinear functions of space and can 
then be exactly computed in terms of gradients of the macroscopic field U. 
In this sense, the choice of the reconstruction operator is equivalent to a 
turbulence model. From Eq. (4), it is clear that both the streaming and 
the collision operators become "dressed" with a certain degree of non- 
locality which is explicitly fixed by the precise nature of the reconstruction 
operator. 

The lowest order "h-consistent" FVLBE scheme is the one based on a 
piecewise constant ("pwc" hereafter) reconstruction operator and upwind 
spatial differencing. Lowest order means that no reconstruction at all is 
performed, so that in each macrocell the coarse-grained distribution 
function F takes just a single value. Upwind differencing means that the 
boundary values f; ,  are set to the coarse-grain values corresponding to the 
macrocell from which "particles" are streaming in. As an example, for 
direction 1 (rightward streaming), we have fe = Fe, fw =Fw, where W 
indicates the "west" node. The pwc version of FVLBE is the closest one to 
the original LBE, in that it entails the minimal loss of locality. The price 
to pay for this simplicity is a significant increase of the numerical viscosity, 
that is, a significant reduction of the highest Reynolds number achievable 
in the simulation. A standard Fourier analysis of the pwc FVLBE scheme 
yields in fact the following value for numerical diffusion (in units of the fine 
lattice): 

1 ( A x -  1) (5) 
vn - 2 At 
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This expression tells us that, while in the fine lattice (Ax = At = 1) numeri- 
cal diffusion is absent, for Ax >> 1, v, scales like Ax, so that it rapidly over- 
whelmes the one pertaining to the uniform lattice, which cannot be lowered 
below a threshold of the order of 0.01 in present-day LBE simulations. The 
presence of numerical diffusion is clearly evidenced in Fig. 2, which refers 
to the flow speed u for a Poiseuille flow in a channel of width H = 48 lattice 
units for different values of the viscosity VLBE. The pressure gradient is 
adjusted in such a way as to yield a maximum speed Umax = 0.02 in the 
absence of numerical diffusion. The simulation has been performed with 
32 points, distributed as follows: 16 in the peripherical regions (spacing 1) 
and 16 in the central one (spacing 2), corresponding to a numerical 
viscosity vn = 0.5. 

A dramatic improvement is obtained by moving to the next order 
reconstruction operator, i.e., a piecewise linear representation of the 
distribution function ("pwl" hereafter). Leaving the details to a future and 
lengthier publication, we simply list the explicit form of this operator. For 
direction i = 1 

+ - Fw - Xp)] (6) 

fe = [Fe  + ( x F e P ~ _ - x ~ ) ( x * - x e ) ] p + F s ( 1 - P ) ;  p = ( 1 - O . 5 A x  -I)  (7) 

0.020 

where W and S denote the centers of the "west" and "south" cells (similar 
expressions hold for the remaining directions) and x* is a free parameter 
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and for direction i =  2 

Fig. 2. Parabolic profiles obtained with the pwc FVLBE method for different values of the 
LBE viscosity (NU). Note that a reasonable agreement with the analytical result is attained 
only in the limit VL~E >> v.. 
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Fig. 3. Parabolic profiles obtained with the pwl FVLBE method for different values of the 
LBE viscosity (NU). Note the improvement  of about  two orders of magni tude with respect 
to the pwc method. 

which is adjusted in such a way as to minimize numerical diffusion. 
Lengthy but straightforward algebra (most conveniently performed with 
the aid of an algebraic manipulator, SCRATCHPAD II in our case (6)) 
shows that in order to obtain v, = 0 (in the case of a Cartesian lattice) one 
has to make the following position x*-  xp=O.5(Ax-1) for i =  1, and 
x*-xp=O.5(Ax-1)/(1-O.5dx -1) for i=2 .  We note that for the case 
i =  1, x* coincides with the location of the particles of the fine grid which 
cross the boundary of the macrocell Cp in a single time step. In the case 
i =  2 (streaming up-right), we have not been able to find an equivalently 
transparent geometrical interpretation. Finally, we point out the presence 
of the weight ( 1 -  p), which is associated with corner-transport-upwind (5) 
carrying the contribution from cell south to the flux on the east boundary. 
One can readily check that this term, while of higher order in 1lAx, is 
essential to the "h-consistency" of the pwl FVLBE scheme. This theoretical 
analysis is confirmed by numerical simulation, as shown in Fig. 3, which 
refers to the same numerical setup as Fig. 2, with the pwc scheme replaced 
by the pwl version. As one sees, the analytical results are perfectly 
reproduced up to very small values of •LBE of the order of 10 -2, i.e., well 
compatible with those usually employed in uniform LBE simulations. The 
discrepancy for I~LB E < 0.02 is due to the small error introduced there where 
Ax undergoes a discontinuous change (well visible in Fig. 3) and can 
certainly be alleviated by redestributing the grid points in a smoother way. 
Even in the present status, FVLBE has access basically to the same range 
of Reynolds numbers attainable by LBE at a minor cost in terms of com- 
putational nodes, and better geometrical flexibility. These advantages are 
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obtained at the expense of a (weak) loss of locality, which entails a corre- 
sponding increase of the computational work per node. Future research, to 
be performed on a case by case basis, will indicate the best compromise 
between the conflicting issues of geometrical flexibility and computational 
efficiency. 
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